Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 6214, 2024 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-38486008

RESUMO

Fucoidan has attracted considerable attention from scientists and pharmaceutical companies due to its antioxidant, anticoagulant, anti-inflammatory, anti-tumor, and health-enhancing properties. However, the extraction of fucoidan from seaweeds often involves the use of harsh chemicals, which necessitates the search for alternative solvents. Additionally, the high viscosity and low cell permeability of high molecular weight (Mw) fucoidan can limit its effectiveness in drug action, while lower Mw fractions exhibit increased biological activity and are also utilized as dietary supplements. The study aimed to (1) extract fucoidan from the seaweed Fucus vesiculosus (FV) using an environmentally friendly solvent and compare it with the most commonly used extraction solvent, hydrochloric acid, and (2) assess the impact of ultrasound-assisted depolymerization on reducing the molecular weight of the fucoidan extracts and examine the cytotoxic effect of different molecular weight fractions. The findings indicated that the green depolymerization solvent, in conjunction with a brief ultrasound treatment, effectively reduced the molecular weight. Moreover, a significant decrease in cell viability was observed in selected samples, indicating potential anticancer properties. As a result, ultrasound was determined to be an effective method for depolymerizing crude fucoidan from Fucus Vesiculosus seaweed.


Assuntos
Fucus , Polissacarídeos , Alga Marinha , Alga Marinha/química , Fucus/química , Anticoagulantes , Solventes
2.
Int J Biol Macromol ; 256(Pt 1): 128195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38008143

RESUMO

The study involves development of a green biorefinery process for obtaining fucoidan, laminarin, mannitol, alginate and protein from dry and fresh Fucus vesiculosus and Ascophyllum nodosum using hydrochloric acid and a green extraction solvent. After the extraction of fucoidan which was the targeted biomolecule, an extract and by-product (residual biomass) were obtained. The extract was passed through an ultrafiltration membrane, where fucoidan was obtained in the ultrafiltration retentate while ultrafiltration permeate was analysed for laminarin and mannitol. The residual biomass was used for obtaining alginate using ultrasound (20 kHz, 64 % amplitude and 32 min, optimum parameters for alginate extraction based on our previous study). All the samples, showed good results for alginate, laminarin and mannitol, indicating that the by-products can be utilised using this green extraction process. The comparison of both dry and fresh seaweed is relevant from an industry perspective, as fresh seaweed can directly be used for extraction, avoiding drying which adds significantly to the cost of the process. Life cycle impact assessment of the complete seaweed value chain has been carried out to identify the energy demand and key environmental hotspots. This biorefinery process can be used by industry to improve their processes and utilise the by-products generated efficiently.


Assuntos
Ascophyllum , Fucus , Glucanos , Alga Marinha , Alginatos/metabolismo , Alga Marinha/metabolismo , Fucus/metabolismo , Manitol , Polissacarídeos , Proteínas
3.
Crit Rev Biotechnol ; 43(6): 904-919, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35786238

RESUMO

In the modern era, macro-microalgae attract a strong interest across scientific disciplines, owing to the wide application of these cost-effective valuable bioresources in food, fuel, nutraceuticals, and pharmaceuticals etc. The practice of eco-friendly extraction techniques has led scientists to create alternative processes to the conventional methods, to enhance the extraction of the key valuable compounds from macro-microalgae. This review narrates the possible use of novel cell disruption techniques, including use of ionic liquid, deep eutectic solvent, surfactant, switchable solvents, high voltage electrical discharge, explosive decompression, compressional-puffing, plasma, and ozonation, which can enable the recovery of value added substances from macro-microalgae, complying with the principles of green chemistry and sustainability. The above-mentioned innovative techniques are reviewed with respect to their working principles, benefits, and possible applications for macro-microalgae bioactive compound recovery and biofuel. The benefits of these techniques compared to conventional extraction methods include shorter extraction time, improved yield, and reduced cost. Furthermore, various combinations of these innovative technologies are used for the extraction of thermolabile bioactive compounds. The challenges and prospects of the innovative extraction processes for the forthcoming improvement of environmentally and cost-effective macro-microalgal biorefineries are also explained in this review.


Assuntos
Microalgas , Microalgas/química , Solventes/química , Eletricidade , Suplementos Nutricionais , Biotecnologia/métodos , Biomassa
4.
J Appl Phycol ; 33(6): 4083-4091, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456508

RESUMO

Seaweeds are a valuable potential source of protein, as well as free amino acids (FAAs) with umami flavour which are in high demand by the food industry. The most commonly used flavouring agents in the food industry are chemically synthesised and therefore are subject to concerns regarding their safety and associated consumer resistance. This study focuses on the effects of extraction time (1 and 2 h) and solvents (0.1 M HCl, 1% citric acid and deionised water) on the extraction of protein and FAAs including umami FAAs from Irish brown seaweeds (Ascophyllum nodosum and Fucus vesiculosus). Extraction yields were influenced by both the extraction solvent and time, and also varied according to the seaweed used. Both seaweeds investigated were found to be good sources of protein, FAAs including umami FAAs, demonstrating potential application as flavouring agents in the food industry. Overall, the use of green solvents (deionised water and citric acid) resulted in higher recoveries of compounds compared to HCl. The results of this study will facilitate the use of more sustainable solvents in industry for the extraction of proteins and flavouring agents from seaweed.

5.
Mar Drugs ; 18(5)2020 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-32403273

RESUMO

This study investigates ultrasound assisted extraction (UAE) process parameters (time, frequency and solvent) to obtain high yields of phlorotannins, flavonoids, total phenolics and associated antioxidant activities from 11 brown seaweed species. Optimised UAE conditions (35 kHz, 30 min and 50% ethanol) significantly improved the extraction yield from 1.5-fold to 2.2-fold in all seaweeds investigated compared to solvent extraction. Using ultrasound, the highest recovery of total phenolics (TPC: 572.3 ± 3.2 mg gallic acid equivalent/g), total phlorotannins (TPhC: 476.3 ± 2.2 mg phloroglucinol equivalent/g) and total flavonoids (TFC: 281.0 ± 1.7 mg quercetin equivalent/g) was obtained from Fucus vesiculosus seaweed. While the lowest recovery of TPC (72.6 ± 2.9 mg GAE/g), TPhC (50.3 ± 2.0 mg PGE/g) and TFC (15.2 ± 3.3 mg QE/g) was obtained from Laminaria digitata seaweed. However, extracts from Fucus serratus obtained by UAE exhibited the strongest 1,1-diphenyl-2-picryl-hydrazyl (DPPH) scavenging activity (29.1 ± 0.25 mg trolox equivalent/g) and ferric reducing antioxidant power (FRAP) value (63.9 ± 0.74 mg trolox equivalent/g). UAE under optimised conditions was an effective, low-cost and eco-friendly technique to recover biologically active polyphenols from 11 brown seaweed species.


Assuntos
Antioxidantes/isolamento & purificação , Extratos Vegetais/isolamento & purificação , Polifenóis/isolamento & purificação , Alga Marinha/química , Taninos/isolamento & purificação , Antioxidantes/química , Antioxidantes/farmacologia , Cromatografia Líquida de Alta Pressão , Etanol/química , Fucus/química , Irlanda , Laminaria/química , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Solventes/química , Taninos/farmacologia , Fatores de Tempo , Ondas Ultrassônicas
6.
Mar Drugs ; 18(3)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244865

RESUMO

This study aims to determine the influence of (1) ultrasound-assisted extraction (UAE), (2) microwave-assisted extraction (MAE) and (3) a combination of ultrasound-microwave-assisted extraction (UMAE) on the yields of fucose-sulphated polysaccharides (FSPs), total soluble carbohydrates and antioxidants extracted from A. nodosum. Scanning electron microscopy (SEM) was used to evaluate the influence of the extraction technologies on the surface of macroalgae while principal component analysis was used to assess the influence of the extraction forces on the yields of compounds. UMAE generated higher yields of compounds compared to UAE and MAE methods separately. The maximum yields of compounds achieved using UMAE were: FSPs (3533.75 ± 55.81 mg fucose/100 g dried macroalgae (dm)), total soluble carbohydrates (10408.72 ± 229.11 mg glucose equivalents/100 g dm) and phenolic compounds (2605.89 ± 192.97 mg gallic acid equivalents/100 g dm). The antioxidant properties of the extracts showed no clear trend or extreme improvements by using UAE, MAE or UMAE. The macroalgal cells were strongly altered by the application of MAE and UMAE, as revealed by the SEM images. Further research will be needed to understand the combined effect of sono-generated and microwave-induced modifications on macroalgae that will allow us to tailor the forces of extraction to target specific molecules.


Assuntos
Antioxidantes/isolamento & purificação , Alga Marinha/química , Extração em Fase Sólida/métodos , Antioxidantes/efeitos da radiação , Produtos Biológicos/efeitos da radiação , Microscopia Eletrônica de Varredura , Micro-Ondas/efeitos adversos , /ultraestrutura , Alga Marinha/efeitos da radiação , Alga Marinha/ultraestrutura , Ondas Ultrassônicas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...